Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 6: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717338

RESUMO

The representation, integration, and interpretation of omic data is a complex task, in particular considering the huge amount of information that is daily produced in molecular biology laboratories all around the world. The reason is that sequencing data regarding expression profiles, methylation patterns, and chromatin domains is difficult to harmonize in a systems biology view, since genome browsers only allow coordinate-based representations, discarding functional clusters created by the spatial conformation of the DNA in the nucleus. In this context, recent progresses in high throughput molecular biology techniques and bioinformatics have provided insights into chromatin interactions on a larger scale and offer a formidable support for the interpretation of multi-omic data. In particular, a novel sequencing technique called Chromosome Conformation Capture allows the analysis of the chromosome organization in the cell's natural state. While performed genome wide, this technique is usually called Hi-C. Inspired by service applications such as Google Maps, we developed NuChart, an R package that integrates Hi-C data to describe the chromosomal neighborhood starting from the information about gene positions, with the possibility of mapping on the achieved graphs genomic features such as methylation patterns and histone modifications, along with expression profiles. In this paper we show the importance of the NuChart application for the integration of multi-omic data in a systems biology fashion, with particular interest in cytogenetic applications of these techniques. Moreover, we demonstrate how the integration of multi-omic data can provide useful information in understanding why genes are in certain specific positions inside the nucleus and how epigenetic patterns correlate with their expression.

2.
Biomed Res Int ; 2014: 207041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050327

RESUMO

The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.


Assuntos
Simulação por Computador , Sistemas On-Line/instrumentação , Design de Software , Estatística como Assunto , Biologia de Sistemas/instrumentação , Bacteriófago lambda/fisiologia , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Neurospora/metabolismo , Interface Usuário-Computador
3.
Brief Bioinform ; 15(5): 798-813, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23780997

RESUMO

The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly popular technique in bioinformatics. The simulation-analysis workflow may result computationally expensive reducing the interactivity required in the model tuning. In this work, we advocate the high-level software design as a vehicle for building efficient and portable parallel simulators for the cloud. In particular, the Calculus of Wrapped Components (CWC) simulator for systems biology, which is designed according to the FastFlow pattern-based approach, is presented and discussed. Thanks to the FastFlow framework, the CWC simulator is designed as a high-level workflow that can simulate CWC models, merge simulation results and statistically analyse them in a single parallel workflow in the cloud. To improve interactivity, successive phases are pipelined in such a way that the workflow begins to output a stream of analysis results immediately after simulation is started. Performance and effectiveness of the CWC simulator are validated on the Amazon Elastic Compute Cloud.


Assuntos
Armazenamento e Recuperação da Informação , Processos Estocásticos , Biologia de Sistemas , Biologia Computacional , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...